

## Symmetry and Group Theory – Exercise Set 3

3.1) Show that all molecules are chiral that do not possess an  $S_n$  axis.

3.2) Determine the point group of 1,3,5,7-tetramethylcyclooctatetraene. Show that the molecule is achiral even though it does not have a reflection plane or a center of inversion.

3.3) Sketch the dipole moment in  $\text{NH}_3$ , phenol,  $\text{PPh}_3$ .

3.4) Show that the group multiplication table of  $C_{2v} = \{E, C_2, \sigma_v(xz), \sigma_v(yz)\}$  is the one given below. Show this by expressing the symmetry operations by transformation matrices acting on a point in Cartesian coordinates  $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ .

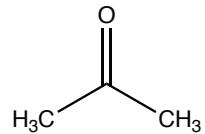
| $C_{2v}$       | $E$            | $C_2$          | $\sigma_v(xz)$ | $\sigma_v(yz)$ |
|----------------|----------------|----------------|----------------|----------------|
| $E$            | $E$            | $C_2$          | $\sigma_v(xz)$ | $\sigma_v(yz)$ |
| $C_2$          | $C_2$          | $E$            | $\sigma_v(yz)$ | $\sigma_v(xz)$ |
| $\sigma_v(xz)$ | $\sigma_v(xz)$ | $\sigma_v(yz)$ | $E$            | $C_2$          |
| $\sigma_v(yz)$ | $\sigma_v(yz)$ | $\sigma_v(xz)$ | $C_2$          | $E$            |

3.5) Show that  $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ .

3.6) Are the natural numbers  $\mathbb{N} = \{1, 2, 3, \dots\}$  a group with respect to multiplication?

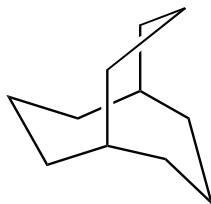
3.7) Are the integers  $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$  a group with respect to addition?

3.8) Name subgroups of  $C_{2v}$ .

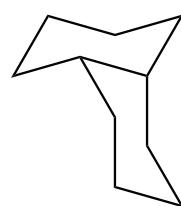

3.9)  $A$ ,  $B$ , and  $C$  are elements of a group. Prove that if  $A$  is conjugate with  $B$  and  $A$  is conjugate with  $C$ , then  $B$  is conjugate with  $C$ .

3.10) Determine the multiplication table of the group  $G_3 = \{E, A, B\}$ . What can you tell about the properties of this group? Determine the classes of  $G_3$ .

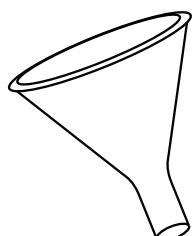
## Homework


3.11) Determine the point groups of the following molecules and objects.

**A**




acetone,  
treat methyl groups  
as spheres


**B**



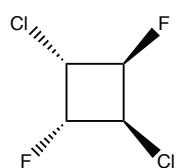
**C**



**D**



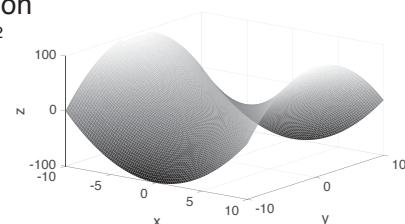
**E**




**F**



$[\text{XeF}_8]^{2-}$   
(square antiprism)


**G**



surface described  
by the function  

$$z = x^2 - y^2$$

**H**



3.12) Construct the group multiplication table of the point group C2h. Determine the classes of the point group C2h.

3.13) Which point group is obtained if one deletes the inversion operation  $i$  from the point group  $S_6$ ?

3.14) Show that the numbers  $\{c, c^2, c^3, \dots, c^n\}$  with  $c = e^{i\frac{2\pi}{n}}$  and integer  $n$  form a group with respect to multiplication.

3.15) Show that  $G = \{1, -1, i, -i\}$  is a group with respect to multiplication. Here,  $i$  refers to the complex number with  $i^2 = -1$ .

- a) First, write down the group multiplication table.
- b) Then show that  $G$  meets all the criteria for the definition of a group.
- c) Which special properties does the group  $G$  have?